70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

1
2
3
4
5
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

1
2
3
4
5
6
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

题解:

简单动态规划

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
public int climbStairs(int n) {
if (n < 3) {
return n;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;

for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
  • 时间复杂度:O(N)
  • 空间复杂度:O(N)